
When 10% Matters: A Tale of Two Mindsets Through
the Eyes of a Young Investor

A comparative analysis of Dynamic Programming and the Greedy Algorithm to model
“patient” versus “impulsive” investment strategies.

Maheswara Bayu Kaindra - 13523015
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: kaindramaheswara11@gmail.com , 13523015@std.stei.itb.ac.id

Abstract—For a student with a limited capital, investing can
be a double-edged sword. Investing provides a good opportunity
to force students to save. On the other hand, investment also has
big risks, where losing 10% can change their expenses for daily
life. This paper analyzes how to invest (especially in the
Indonesian Stock market) by comparing two opposing mindsets:
impulsive and patient. The impulsive mindset is represented by
the Greedy Algorithm that prioritized short-term profits. The
patient mindset is modeled by the Dynamic Programming
Approach, which identifies the most optimal series of
transactions over a given period of time.

Keywords—Dynamic Programming; Greedy; Risk; Indonesian
Stock Market

I.​ INTRODUCTION

In the last year or two, stock market investing has become
a popular topic among the younger generation, particularly
university students. A major reason for this trend is
technology. With mobile trading apps, it is now easier to start
investing, even with a small amount of money. Their
motivations of investing vary, ranging from long-term saving,
growing their capital by reinvesting dividends, and some to
profit from buying and selling stocks. [1]

However, it’s important to note that university students
operate on a “tight” budget. They frequently sacrifice their
daily spending money to invest in the market. Under this
condition, investing in stocks poses a significant risk, as even
a 10% loss can have a major impact on their day-to-day life.
This is why making wise investment decisions is crucial. This
paper analyzes the issue from two different perspectives: the
patient investor and the greedy one. [2]

For this study, the patient investor will be modeled by the
Dynamic Programming algorithm, where decisions are made
by analyzing all historical transaction data. Meanwhile, the
greedy investor will be modeled by the Greedy Algorithm,
which operates by targeting a certain price at which to buy or
sell a stock. This research will focus on the Indonesian stock
market and will be implemented using the Python
programming language. This research is expected to provide a
quantitative, data-driven basis for the importance of patience
and discipline in investing. Furthermore, this paper

demonstrates a real-world application of Greedy and Dynamic
Programming Algorithms. [3]

II.​ THEORETICAL BACKGROUND

Stocks and Indonesian Stock Market

​ Definition – A stock is a financial instrument that
represents a small fraction of ownership (equity) in a
company. When someone buys a stock, they are essentially
purchasing a small piece of that corporation. Investors buy
stocks with the expectation of earning a return, either through
capital appreciation (increase in the stock’s price) or through
dividends (distributions of the company’s profits).

​ Factors That Determine Stock Prices – A stock’s price in
the market is determined by the principle of supply and
demand. This price fluctuates due to a variety of factors,
including company-specific events (like earnings reports) and
macroeconomic conditions. Essentially, a stock’s price reflects
what investors believe a company is worth and what its future
prospects are.

​ Indonesian Stock Market – To understand the dynamics of
the Indonesian stock market, it’s essential to recognize the
structure of the Indonesian Composite Stock Price Index
(IHSG). IHSG is a market-capitalization-weighted index. This
means that the index’s movement is not influenced by all
Indonesian stocks. Instead, it’s heavily dominated by the
companies with the largest market values.

Figure 2.1. Indonesian Composite Stock Price Index (IHSG) Performance,

three-year Period (June 2022 - June 2025)​
Source : StockBit

​ Based on the market capitalization data from the first
quarter of 2024, the five stocks with the most significant
influence to the IHSG’s movement are as follows:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

mailto:kaindramaheswara11@gmail.com
mailto:13523015@std.stei.itb.ac.id

TABLE 2.1: 50 BIGGEST MARKET CAPITALIZATION - IHSG, FEB 2024

No.
Stocks

Code - Listed Stocks %

1. BBCA - Bank Central Asia 10.31

2. BBRI - Bank Rakyat Indonesia 7.68

3. BREN - Barito Renewables E. 6.93

4. BYAN - Bayan Resources 5.56

5. BMRI - Bank Mandiri 5.53

Source: Bursa Efek Indonesia

​This research focuses on those 5 stocks.

Greedy Algorithm

The Greedy Algorithm is a simple, straightforward, and
widely used method for solving optimization problems. There
are two types of optimization:

a)​ Maximization.
b)​ Minimization.

​ By definition, the Greedy Algorithm is a method that
solves problems by making the best possible choice at each
stage, without considering future consequences. It operates on
the hope that by repeatedly choosing the local optimum, it’ll
arrive at the global uptimum (Munir, 2024).

​ Terminology – There are some keywords that are essential
for describing this algorithm:

a)​ Candidate Set: The set of candidates from which a
selection is made at each stage.

b)​ Solution Set: The set of candidates that have already
been chosen.

c)​ Solution Function: Determines if the solution set
constitutes a complete solution.

d)​ Selection Function: Chooses the next candidate based
on a spesific greedy heuristic.

e)​ Feasibility Function: Checks if a selected candidate
can be added to the current solution set without
violating constraints.

f)​ Objective Function: The function to be maximized of
minimized.

​ Algorithm–The Greedy algorithm is usually implemented
by these 3 steps:

a)​ Initialization: Create an empty solution set (S)
assuming that a candidate set (C) already exists.

b)​ Process: As long as the candidate set (C) is not
empty and a complete solution hasn’t been found:

i)​ Select the best available candidate x from C
(based on the greedy heuristic).

ii)​ Remove x from C.
iii)​ Check if x is feasible to be added to S.
iv)​ If it is feasible, add x do the solution set S.

c)​ Result: If S represents a complete solution, return S.
Otherwise, report that no solution was found.

​ Advantages – There are several advantages to using the
Greedy Algorithm:

a)​ Efficient: Greedy algorithm are often more efficient
and faster than other methods like exhaustive search.
While other algorithms can have exponential time
complexity, the Greedy Algorithm runs in polinomial
time, making it much faster for large inputs.

b)​ Useful for approximation: while finding an optimal
solution is too slow (or computationally expensive),
the Greedy Algorithm can be used to quickly find a
relatively good solution.

​ Disadvantages – There are also several disadvantages to
using the Greedy Algorithm:

a)​ Not Always Optimal: The Greedy Algorithm does not
guarantee a globally optimal solution; That is because
it does not consider all possibilities exhaustively.

b)​ Strategy dependent: The success of the algorithm
depends heavily on choosing the right greedy
heuristic. For some problems, finding a heuristic that
always produces the best solution is almost
impossible.

Dynamic Programming

Definition – The Dynamic Programming algorithm is a
problem-solving method by breadking down the solution into
a series of stages so that the solution can be viewed as a series
of interrelated decisions (Munir, 2024). This method builds a
solution by examining and remembering the outcomes of
many different decision sequences.

Figure 2.1. A multi-staged Graph​

Source:
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_a

nd_analysis_of_algorithms_multistage_graph.htm

​ In this context, the problem can be represented as a
multi-stage graph (as shown in the figure above), where:

a)​ denotes the stage number. 𝐾
b)​ Each represents a state (decision to make). 𝑛𝑜𝑑𝑒

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_multistage_graph.htm
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_multistage_graph.htm

c)​ Each represents the “local” cost of making a 𝑒𝑑𝑔𝑒
particular decision.

​ This algorithm follows the Principle of Optimality: for an
overall solution to be considered optimal, every sub-solution
within it (such as the segment up to stage) must also be 𝐾
optimal.

​ Algorithm – The following are the steps to solve a problem
using Dynamic Programming:

a)​ Characterize the Structure of an Optimal Solution:​
The first step is to define the problem’s structure.
This involves identifying the stages (), the states 𝐾
within each stage, and the decisions to be made.

b)​ Recursively Define the Value of an Optimal Solution:​
The second step is to formulate a recursive
relationship that defines how the value of an optimal
solution (at one stage) depends on the values of
optimal solutions from previous stages.
i) Base case: 𝑓

1
(𝑠) = 𝑐

𝑥1, 𝑠
ii) Recursive case: 𝑓

𝑘
(𝑠) = 𝑚𝑖𝑛(𝑓

𝑘−1
(𝑥

𝑘
) + 𝑐

𝑥𝑘, 𝑠

c)​ Compute the value of an optimal solution:​
The third step is to calculate the value of the optimal
solution using a state table. This computation can be
done forward (from to) or backward 𝐾 = 1 𝐾 = 𝑛
(from to). 𝐾 = 𝑛 𝐾 = 1

TABLE 2.1: STATE TABLE

 𝑥
𝑘

Optimal Solution

 𝑓
𝑘
(𝑥

𝑘
) 𝑥

𝑘
*

 𝑥
𝑘1

Cost for 𝑥
𝑘1 …

 𝑥
𝑘2

Cost for 𝑥
𝑘2 …

Note: represents the minimum cost for 𝑥
𝑘

* 𝑥
𝑘

d)​ Construct the Optimal Solution:​
This final step involves tracing back through the state
tables to find the actual sequence of decisions that
yields the optimal solution.

III.​ IMPLEMENTATION DESIGN

The Greedy Algorithm

​ In this research, the greedy algorithm determines its daily
action based on a trend-following rule relative to a short-term
moving average. The logic, representing the “greedy trader”,
is as follows:

1)​ SMA (Simple Moving Average): contains a 5-day
moving average of the stock’s price.

2)​ Buy case: If the current price drops below this
average, the algorithm invests its entire cash balance
to buy the stock.

3)​ Sell case: If the current price rises above this average,
it sells its entire holding.

Fig 3.1. The Greedy Algorithm Approach Flowchart​
Source: Made with draw.io

The Dynamic Programming Algorithm
​ The Dynamic Programming approach works by analyzing
the best action to take for every iteration (day). Overall, there
are four possible actions that can be taken, as follows:

1)​ Hold Cash: do nothing while holding cash.
2)​ Sell Stock: sell the entire stock holding.
3)​ Hold Stock: do nothing while holding the stock.
4)​ Buy Stock: purchase stock with all available cash.

​ In this approach, all transactions are “all-in”, meaning the
entire cash balance is used for a purchase, and the entire stock
position is liquidated in a sale.

Fig 3.2. Multi-Staged Graph for Stock/Cash Actions​
Source: Made with draw.io

In this implementation, the base case is represented by Day-0,
where cash is equal to the initial capital (IDR 10,000,000 is
used). For the next iterations, profit maximization is applied as
follows:

a)​ Base Case:

, 𝑐𝑎𝑠ℎ
0

= 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑝𝑖𝑡𝑎𝑙
 - ℎ𝑜𝑙𝑑

0
= ∞

b)​ Recursive Case:

 𝑐𝑎𝑠ℎ
𝑘

= 𝑚𝑎𝑥(𝑐𝑎𝑠ℎ
𝑘−1

, ℎ𝑜𝑙𝑑
𝑘−1

×
𝑝𝑟𝑖𝑐𝑒

𝑘

𝑝𝑟𝑖𝑐𝑒
𝑘−1

)

 ℎ𝑜𝑙𝑑
𝑘

= 𝑚𝑎𝑥(ℎ𝑜𝑙𝑑
𝑘−1

×
𝑝𝑟𝑖𝑐𝑒

𝑘

𝑝𝑟𝑖𝑐𝑒
𝑘−1

, 𝑐𝑎𝑠ℎ
𝑘−1

)

Where represents the cash on hand at the end of day-k. 𝑐𝑎𝑠ℎ
𝑘

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

http://draw.io

​ Therefore, this algorithm cannot be used as a practical (in
real life) strategy, but rather as a benchmark representing the
biggest possible return (a.k.a an idealized example of a trader
with perfect foresight).

The Overall Program

​ In general, tha application consists of a main program in
the root folder that calls functions from modules located in the
src directory. The modules within the src directory are as
follows:

1)​ Data Downloader
a)​ Prompts the user for a stock ticker symbol as

input.
b)​ Downloads the last two years of historical

stock data, counting back from the current
date.

c)​ Converts the data into .csv format and saves
it in the data directory.

2)​ Data Manager
a)​ Retrieves the CSV from the data directory.
b)​ Generates the necessary plots and graphs,

converts them into .png format, and saves
them tot he results directory.

3)​ Greedy and Dynamic Programming Algorithms
a)​ Contains the implementation of the core

trading logic.

Fig 3.3. Overall Program Data-flow Diagram​
Source: Made with draw.io

The program prompts the user to enter some stock ticker
symbols and, in return, generates the following outputs:

1)​ Summary of the investment returns (.png and .csv).
2)​ Graphs illustrating the portfolio’s equity performance

over time (.png)..

IV.​ PROGRAM IMPLEMENTATION

Repository Structure and Link

​ The entire project is housed in this GitHub repository,
which has the following general structure:

two-mindsets-investing-simulator/
├── data/
│ └── BBCA.csv, BBRI.csv, etc.
├── results/
├── src/
│ ├── __init__.py
│ ├── data_manager.py
│ ├── greedy_simulator.py
│ ├── dp_simulator.py
│ └── visualizer.py
├── main.py
├── requirements.txt
└── README.md

Greedy Algorithm Implementation

​ The following is the implementation of the Greedy
Algorithm according to the specified design.

def greedy_simulator(stock_data,
initial_capital=10000000, sma_window=5):
 data = stock_data.copy()
 data['SMA'] =
data['Close'].rolling(window=sma_window).mean()
 cash = initial_capital
 shares = 0
 portfolio_values = []

 # Loop: Trading Simulation (Iterate Daily)
 for i in range(len(data)):

 # Handle: if SMA is NaN, skip the iteration
(for the first few days)
 if np.isnan(data['SMA'].iloc[i]):
 portfolio_values.append(initial_capital)
 continue

 price_today = data['Close'].iloc[i]
 sma_today = data['SMA'].iloc[i]

 # Buy: If price is above SMA and we don't
hold the stock, buy shares
 if price_today > sma_today and shares == 0:
 # Buy: Go all in
 shares_to_buy = cash // price_today
 cost = shares_to_buy *
price_today
 cash -= cost
 shares += shares_to_buy
 print(f"{data.index[i].date()}: Bought
{shares_to_buy} shares at {price_today:.2f}, Cash
left: {cash:.2f}")

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

http://draw.io

 # Sell: If price is below SMA and we hold the
stock, sell shares
 elif price_today < sma_today and shares > 0:
 # Sell: Go all out
 sale_value = shares * price_today
 cash += sale_value
 print(f"{data.index[i].date()}: Sold
{shares} shares at {price_today:.2f}, Cash now:
{cash:.2f}")
 shares = 0

 current_portfolio_value = cash + (shares *
price_today)

portfolio_values.append(current_portfolio_value)

 print(f"Final Portfolio Value:
{portfolio_values[-1]:.2f}")
 return pd.Series(portfolio_values,
index=data.index)
 return summary_df

Dynamic Programming Implementation

​ The following is the implementation of the Dynamic
Programming Algorithm according to the specified design.

def dynamic_programming_simulator(stock_data,
initial_capital=10000000):

 prices = stock_data['Close'].to_numpy()
 n = len(prices)
 if n < 2:
 return pd.Series([initial_capital] * n,
index=stock_data.index)

 cash = np.zeros(n)
 hold = np.zeros(n)

 cash[0] = initial_capital
 hold[0] = 0

 for i in range(1, n):
 price = prices[i]
 prev_price = prices[i-1]
 cash_stay = cash[i-1]
 cash_sell = 0
 if hold[i-1] > 0:
 cash_sell = hold[i-1] * price /
prev_price

 cash[i] = max(cash_stay, cash_sell)

 hold_keep = 0
 if hold[i-1] > 0:
 hold_keep = hold[i-1] * price /
prev_price

 hold_buy = cash[i-1]
 hold[i] = max(hold_keep, hold_buy)

 # Work backwards to find the actual buy/sell
sequence

Cont:

transactions = []
 i = n - 1

 if cash[n-1] > hold[n-1]:
 current_state = 'cash'
 else:
 current_state = 'hold'
 transactions.append(('sell', n-1,
prices[n-1]))
 while i > 0:
 price = prices[i]
 prev_price = prices[i-1]
 if current_state == 'cash':
 if hold[i-1] > 0:
 cash_from_sell = hold[i-1] * price /
prev_price
 if abs(cash[i] - cash_from_sell) <
abs(cash[i] - cash[i-1]):
 transactions.append(('sell', i,
price))
 current_state = 'hold'
 else:
 if abs(hold[i] - cash[i-1]) < 1e-6:
 transactions.append(('buy', i,
price))
 current_state = 'cash'
 i -= 1
 transactions.reverse()

 # SIMULATE ACTUAL TRADING
 current_cash = initial_capital
 current_shares = 0
 portfolio_values = [initial_capital]

 transaction_idx = 0

 for i in range(1, n):
 price = prices[i]
 date_str =
stock_data.index[i].strftime('%Y-%m-%d')

 if transaction_idx < len(transactions) and
transactions[transaction_idx][1] == i:
 action, day, transaction_price =
transactions[transaction_idx]

 if action == 'buy' and current_shares ==
0:
 # Buy as many shares as possible
 shares_to_buy = current_cash // price
 if shares_to_buy > 0:
 cost = shares_to_buy * price
 current_cash -= cost
 current_shares += shares_to_buy
 print(f"{date_str}: Bought
{shares_to_buy:.0f} shares at {price:.2f}, Cash
left: {current_cash:.2f}")

 elif action == 'sell' and current_shares
> 0:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Cont:

sale_value = current_shares * price
 current_cash += sale_value
 print(f"{date_str}: Sold
{current_shares:.0f} shares at {price:.2f}, Cash
now: {current_cash:.2f}")
 current_shares = 0

 transaction_idx += 1
 portfolio_value = current_cash +
(current_shares * price)
 portfolio_values.append(portfolio_value)

 # Sell any remaining shares at the end
 if current_shares > 0:
 final_price = prices[-1]
 sale_value = current_shares * final_price
 current_cash += sale_value
 date_str =
stock_data.index[-1].strftime('%Y-%m-%d')
 print(f"{date_str}: Final sale - Sold
{current_shares:.0f} shares at {final_price:.2f},
Final cash: {current_cash:.2f}")
 portfolio_values[-1] = current_cash

 final_value = portfolio_values[-1]
 print(f"Final Portfolio Value:
{final_value:,.0f}")
 print(f"Total Return: {((final_value /
initial_capital) - 1) * 100:.2f}%")

 return pd.Series(portfolio_values,
index=stock_data.index)

Other supporting implementations (other part of the program)
can be found in this GitHub repository.

V. COMPARING THE PERFORMACE OF TH GREEDY AND PATIENT
TRADER STRATEGIES

​ After conducting a 730-day trading simulation using the
Greedy and Dynamic Programming approach on the five most
influential stocks on IHSG (BBCA, BBRI, BREN, BYAN, and
BMRI), the analysis of these results is presented below.

The Greedy Model

​ The Greedy Algorithm, which in this research models an
impulsive investor’s mindset, demonstrated highly variable
performance that was heavily dependent on the price
movement characteristics of each stock. Based on the
portofolio growth comparison graph (the graph below), it can
be concluded that the Greedy Algorithm did not consistently
generate profits across all five stocks.

a)​ Highly Profitable on Stocks with strong trends:​
The strategy successfully recorded its most
significant gains on stocks exhibiting strong
directional trends such as BYAN and BREN.

b)​ Not optimal on Sideways-Trending stocks:​
For the large banking stocks like BBCA, BBRI, and

BMRI, the strategy yielded far lower returns, with
portfolios often stanating or even ending with a minor
loss.

Fig 5.1. Portofolio Performance using the Greedy algorithm​
Source: Kaindra

The Dynamic Programming Model

Fig 5.2. Portofolio Performance using the Dynamic Programming algorithm​
Source: Kaindra

​ Overall, the Dynamic Programming Model, representing
the “patient trader” exhibits a more analytical trading
character. It makes decisions by considering its existing cash
and stock holdings from the previous day and calculating the
maximum potential value it can achieve, whether held as cash
or stock. The main characteristics of this “patient trader” can
be summarized as follows:

a)​ Performance in Difficult Markets:​
The Dynamic Programming model consistently
managed to turn volatile or sideways market
conditions into a profit.

b)​ Transaction Frequency and Precision:​
In contrast to the Greedy model, the Dynamic
Programming approach is more “quiet”. It executes
only the optimal transaction after analyzing the entire
dataset to find the best course of action within the
overall trend.

c)​ Basis for Decision Making:​
Unlike the Greedy model, the DP model’s decisions

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://github.com/MaheswaraKaindra/two-mindsets-investing-simulator

are global and optimal, based on an analysis of the
complete historical data. This makes to model
impractical for real-world applications, as it’s
impossible to know future prices.

​ Therefore, this model cannot function as a predictive tool
but rather as a theoretical benchmark to measure the maximum
potential that exists within the market.

CONCLUSION

​ These findings offer a powerful, data-driven takeaway for
the younger generation, particularly university students: the
temptation to chase quick profits can be a double-edged
sword. This is demonstrated by the Greedy model, in which
the "greedy trader" often achieved sub-optimal results, with
any profits being largely attributable to luck.

​ While in the real world we’ll never have the perfect
foresight of the Dynamic Programming model, it offers a
valuable principle. The discipline of not overreacting to
market shocks, performing in-depth analysis before acting,
and focusing on well-considered, long-term decisions proves
to be the foundation of a much safer and more profitable
investment strategy.

​ When a 10% loss can significantly impact one’s lfie, this
research shws that success in investing is not determined by
the frequency of transactions, but rather by the quality of one’s
investment decisions. Patience, in this context, is an invaluable
asset for an investor.

HTTPS://WWW.YOUTUBE.COM/@MAHESWARAKAINDRASTD

Include link of your video on YouTube in this section.

ACKNOWLEDGMENT (INDONESIAN)

Penulis mengucapkan terima kasih kepada pihak-pihak
yang telah membantu penulis selama melaksanakan
perkuliahan IF2211 Strategi Algoritma pada tahun ajaran
2024/2025 (para Dosen, rekan kerja, hingga teman belajar)
dan serta mereka yang telah memberikan saran berharga
selama proses penulisan makalah ini.

Penulis menyadari bahwa makalah ini masih jauh dari
sempurna. Oleh karena itu, repositori dari penelitian ini
bersifat terbuka bagi siapa saja yang ingin melakukan
eksplorasi atau penyempurnaan lebih lanjut.

Penulis berharap penelitian ini dapat memberi semangat
dan pengetahuab baru bagi mahasiswa dan pelajar, dengan
membuktikan bahwa konsep-konsep teoretis dari strategi
algoritma dapat digunakan secara praktis untuk memodelkan
dan menganalisis dilema finansial dalam kehidupan
sehari-hari, terutama dalam berinvestasi.

REFERENCES
[1]​ Munir, R. (2025). Algoritma Greedy (Bagian 1).

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Alg
oritma-Greedy-(2025)-Bag1.pdf. Program Studi Teknik Informatika,
Institut Teknologi Bandung. Diakses 20 Juni 2025.

[2]​ Munir, R. (2025). Program Dinamis (Bagian 1)
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Pro
gram-Dinamis-(2025)-Bagian1.pdf. Program Studi Teknik Informatika,
Institut Teknologi Bandung. Diakses 20 Juni 2025.

[3]​ Tutorials Point. (n.d.). Design and analysis of algorithms - Multistage
graph.
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/desi
gn_and_analysis_of_algorithms_multistage_graph.htm. Diakses 25 Juni
2025.

[4]​

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Maheswara Bayu Kaindra (13523015)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://www.youtube.com/@MaheswaraKaindraSTD
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Algoritma-Greedy-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Algoritma-Greedy-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_multistage_graph.htm
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_multistage_graph.htm

	I.​ INTRODUCTION
	II.​THEORETICAL BACKGROUND
	Stocks and Indonesian Stock Market
	Figure 2.1. Indonesian Composite Stock Price Index (IHSG) Performance, three-year Period (June 2022 - June 2025)​Source : StockBit
	Source: Bursa Efek Indonesia

	Greedy Algorithm
	Dynamic Programming
	Figure 2.1. A multi-staged Graph​Source: https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_multistage_graph.htm
	Note: 𝑥𝑘* represents the minimum cost for 𝑥𝑘

	III.​IMPLEMENTATION DESIGN
	The Greedy Algorithm
	Fig 3.1. The Greedy Algorithm Approach Flowchart​Source: Made with draw.io

	The Dynamic Programming Algorithm
	Fig 3.2. Multi-Staged Graph for Stock/Cash Actions​Source: Made with draw.io

	The Overall Program
	Fig 3.3. Overall Program Data-flow Diagram​Source: Made with draw.io

	IV.​PROGRAM IMPLEMENTATION
	Repository Structure and Link
	Greedy Algorithm Implementation
	Dynamic Programming Implementation

	V. COMPARING THE PERFORMACE OF TH GREEDY AND PATIENT TRADER STRATEGIES
	The Greedy Model
	Fig 5.1. Portofolio Performance using the Greedy algorithm​Source: Kaindra

	The Dynamic Programming Model
	Fig 5.2. Portofolio Performance using the Dynamic Programming algorithm​Source: Kaindra

	CONCLUSION
	HTTPS://WWW.YOUTUBE.COM/@MAHESWARAKAINDRASTD
	ACKNOWLEDGMENT (INDONESIAN)
	REFERENCES

